Video Salient Object Detection via Fully Convolutional Networks
نویسندگان
چکیده
منابع مشابه
R-FCN: Object Detection via Region-based Fully Convolutional Networks
We present region-based, fully convolutional networks for accurate and efficient object detection. In contrast to previous region-based detectors such as Fast/Faster R-CNN [7, 19] that apply a costly per-region subnetwork hundreds of times, our region-based detector is fully convolutional with almost all computation shared on the entire image. To achieve this goal, we propose position-sensitive...
متن کاملFully-Convolutional Siamese Networks for Object Tracking
The problem of arbitrary object tracking has traditionally been tackled by learning a model of the object’s appearance exclusively online, using as sole training data the video itself. Despite the success of these methods, their online-only approach inherently limits the richness of the model they can learn. Recently, several attempts have been made to exploit the expressive power of deep convo...
متن کاملSalient Object Detection via Objectness Proposals
Salient object detection has gradually become a popular topic in robotics and computer vision research. This paper presents a real-time system that detects salient object by integrating objectness, foreground and compactness measures. Our algorithm consists of four basic steps. First, our method generates the objectness map via object proposals. Based on the objectness map, we estimate the back...
متن کاملSalient Object Detection via Saliency Spread
Salient object detection aims to localize the most attractive objects within an image. For such a goal, accurately determining the saliency values of image regions and keeping the saliency consistency of interested objects are two key challenges. To tackle the issues, we first propose an adaptive combination method of incorporating texture with the dominant color, for enriching the informativen...
متن کاملSalient Object Detection via Augmented Hypotheses
In this paper, we propose using augmented hypotheses which consider objectness, foreground and compactness for salient object detection. Our algorithm consists of four basic steps. First, our method generates the objectness map via objectness hypotheses. Based on the objectness map, we estimate the foreground margin and compute the corresponding foreground map which prefers the foreground objec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2018
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2017.2754941